

Fully Automatic and Real-Time Microrobot Detection and Tracking based on Ultrasound Imaging using Deep Learning

Karim Botros, Mohammad Alkhatib, David FOLIO, Antoine Ferreira

Insa Centre Val de Loire, Université, Laboratoire PRISME, Bourges France

APR IR Bubblebot

I. Introduction: Problem & Objective

Problems:

• Cancer tumor removal surgeries are often very difficult to perform and can cause permanent damage to some organs.

Solution:

• The micro/nanorobots are promising robots that can accomplish many tasks : Targeted delivery, localized diagnostics, and biosensing.

Objective:

• Real time detection and tracking microrobot using ultrasound imaging.

Dataset

1. Dataset

Template Matching:

	1)	0	t,	ſ	tı	n	n
~ •		C	U	L	u	U	

Tracking

4. Experiment Results

5. Conclusion & future work

Robot template	Robot ID	Detection Accuracy	
	1 sphere robot	0.8986	
	2 sphere robot	0.9130	
	3 sphere robot	0.9550	

TABLE II: Detection accuracy % comparison between one-, two- and three-sphere robots.

Detection:

• We used multiple templates for each robot.

Tracking

1. Dataset

2. Detection

Echo tracker based on VGGnet:

TABLE III: Tracking accuracy % comparison between the tracking technique against classical tracking techniques.

	ECO	Particle filter	Mean-shift	KLT
Three spheres	0.93	0.70	0.58	0.44
Two spheres	0.90	0.69	0.51	0.40
One spheres	0.86	0.50	0.40	-

Tracking:

• We have manually labelled and verified the dataset.

4. Experiment Results

3. Tracking

5. Conclusion & future work

5

Experiment Results

génierie des Systèmes, Mécanique, Énergétique

Overall Results:

- We used classic correlation for robot detection AKA template matching.
- Real-time detection of the one-sphere, twosphere and three-sphere microrobots.
- Track and retrack microRobots at very high speed 8mm/s.

Conclusion and Future work

	1. Dataset
	2. Detection
	3. Tracking
Ĭ	4. Experiment Results
E.	5. Conclusion & future work

Conclusion:

- We were able to detect and track microrobots in real-time
- We were able to retrack the robot after disappearance and as well at high speed 8mm/s.

Future work

- Augment the dataset with more images and different robots.
- Use deep-learning for detection.
- Increase the robustness in B-mode against the low quality US image, low signal-tonoise ratio, and poor echogenicity.

APR IR Bubblebot