

PERFORMANCE METRICS FOR A ROBOTIC ACTUATION SYSTEM USING STATIC AND MOBILE ELECTROMAGNETS

Chen Ruipeng, David Folio, Antoine Ferreira Laboratoire PRISME

Institut National des Sciences Appliquées de Centre Val de Loire Bourges 18000, France

INTRODUCTION

Objective: Proposed retinal procedures are at the limits of human performance and perception.

Wireless intraocular microrobots with surface coatings:

- Luminescence sensing,
- Oxygen sensor,
- Targeted drug delivery.

ELECTROMAGNETIC SYSTEM FOR 5-DOFS

M. Kummer, J.J. Abbott, B.E. Kratochvil, R. Borer, A. Sengul, B.J. Nelson, "OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation", *IEEE Transaction on Robotics*, Vol. 26, No. 6, Sept 2010.

Magnetic gradient based pulling

- Holonomic 5-DOF control
 - 3 axis translation, 2 axis orientation

NSA

 $\mathbf{T} = \boldsymbol{\upsilon} \, \mathbf{M} \, \times \, \mathbf{B} \qquad \mathbf{F} = \boldsymbol{\upsilon} \, (\mathbf{M} \cdot \nabla) \, \mathbf{B}$

WORKSPACE ANALYSIS

MAGNETIC MANIPULATION IN FLUIDS

Magnetic gradient based pulling

- Holonomic 5-DOF control
 - 3 axis translation, 2 axis orientation

$$\mathbf{T} = \upsilon \mathbf{M} \times \mathbf{B} \qquad \mathbf{F} = \upsilon (\mathbf{M} \cdot \nabla) \mathbf{B}$$

Fluid dynamics at the small scale:

Viscous forces dominate inertial forces

$$Re = \frac{U \cdot L \cdot \delta}{\eta} \qquad D_{sphere} = 6 \pi \eta r$$

for Re <<1:
$$D_{cylinder, para} = \frac{4 \pi \eta l}{\ln(2l/r) - 0.807}$$

$$F_{drag} = -D \cdot \mathbf{u} \qquad D_{cylinder, ortho} = \frac{8 \pi \eta l}{\ln(2l/r) + 0.193}$$

STATIONARY ELECTROMAGNETS

The advantages of static configurations

- Optimized for a specific application, such as OctoMag, MiniMag;
- Simple configuration;

The disadvantages of static configurations

- Fixed workspace determined by electromagnets configuration;
- Optimized performance only for the overall workspace;
- Existing singular values cannot be removed close to the boundaries;
- Manipulability depends on the position of the microrobot;
- > The control of a certain degree of freedom is achieved only by current.

Solution: Combining stationary and mobile electromagnets

MODEL OF ELECTROMAGNET

6.068

0.005

10.00

-0.01

1.11

MODEL OF ELECTROMAGNET

MAGNETIC FIELD AND GRADIENT GENERATION

- Magnetic field generated by n electromagnets with soft-magnetic cores
 - Linear superposition of fields and gradients

$$(1) \begin{bmatrix} \mathbf{B}(\mathbf{P}) = \sum_{e=1}^{n} \mathbf{B}_{e}(\mathbf{P}) = \sum_{e=1}^{n} \tilde{\mathbf{B}}_{e}(\mathbf{P}) \mathbf{i}_{e} \\ \mathbf{B}(\mathbf{P}) = \begin{bmatrix} \tilde{\mathbf{B}}_{1}(\mathbf{P}) \cdots \tilde{\mathbf{B}}_{n}(\mathbf{P}) \end{bmatrix} \begin{bmatrix} \mathbf{i}_{1} \\ \vdots \\ \mathbf{i}_{n} \end{bmatrix} = \mathcal{B}(\mathbf{P}) \mathbf{I}$$

Operation of system with cores in their linear region

Field precomputed/measured in situ.

Torque and force generation

$$(2) \left\{ \begin{bmatrix} \mathbf{T} \\ \mathbf{F} \end{bmatrix} = \begin{bmatrix} Sk(\mathbf{M})\mathcal{Z}(\mathbf{P}) \\ \mathbf{M}^{T}\mathcal{Z}_{x}(\mathbf{P}) \\ \mathbf{M}^{T}\mathcal{Z}_{y}(\mathbf{P}) \\ \mathbf{M}^{T}\mathcal{Z}_{z}(\mathbf{P}) \\ \mathbf{I} = \mathcal{A}_{T,F}(\mathbf{M}, \mathbf{P})^{\dagger} \begin{bmatrix} \mathbf{I}_{a} \\ \vdots \\ \mathbf{I}_{n} \end{bmatrix} = \mathcal{A}_{T,F}(\mathbf{M}, \mathbf{P})\mathbf{I}$$

 $\begin{bmatrix} \mathsf{T} \\ \mathsf{F} \end{bmatrix} = \mathbf{A}_{\mathsf{T},\mathsf{F}}(\mathsf{M},\mathsf{P})/\mathsf{I}$ $\mathsf{V} = J(\theta)\dot{\theta}$

PERFORMANCE ANALYSIS

The mean index

$$\langle \varphi \rangle = \frac{1}{N} \sum_{p}^{N} \varphi(P)$$

The uniformity index

$$\gamma(\varphi) = 1 - \frac{\sum_{P}^{N} |\varphi(P) - \langle \varphi \rangle|}{2N \langle \varphi \rangle}$$

The manipulability index

$$\boldsymbol{\omega}(\mathbf{A}) = \sqrt{\boldsymbol{d}\boldsymbol{e}\boldsymbol{t}(\mathbf{A}\mathbf{A}^T)} = \prod_{\boldsymbol{e}=1}^{n} \boldsymbol{\sigma}_{\boldsymbol{e}}$$

The normalized manipulability

$$\boldsymbol{\omega}_{\boldsymbol{n}} = \frac{\boldsymbol{\omega}(\mathbf{A}(\boldsymbol{m},\boldsymbol{p}))}{\max_{\boldsymbol{p}\in\boldsymbol{\Omega}}\boldsymbol{\omega}(\mathbf{A}(\boldsymbol{m},\boldsymbol{p}))}$$

The conditioning index

$$1/k = \sigma_{min}/\sigma_{max}$$

FOUR MOBILE ELECTROMAGNETS

PRISME Aventer Marticiphere de Baterie Discus de Creteres de Vision Lorgistan

Mobile angle changing in OctoMag-like structure

FOUR MOBILE ELECTROMAGNETS

Statistical data of the global performance indexes of the force and torque performance analysis.

FOUR MOBILE ELECTROMAGNETS

Performance metrics along the Z-axis for mobile β

etnine Phonializaciplicative de Rentarcites Le la dec Sevel dans, Mercinianis, Starry Histor

ROBOTIC EMA PLATFORM

Stationary arm

Rotating arm

- 8 electromagnets in inverted and non-inverted configurations
- Spherical workspace with a 20 mm diameter
- Up to 50 mT and 5 T/m

3/22/2023

Frequencies up to 2 kHz

MOBILE ELECTROMAGNETS

The advantages of mobile configuration

- Change the local magnetic field distribution;
- Strength variation of magnetic field by both current and position control;
- Less singular values with same number of electromagnets;
- More redundancy for control strategy;
- Flexible system that will respect the geometry of human head, neck and shoulders;
- **The disadvantage of mobile configuration**
 - More complicated to control both current and position of electromagnets;
 - How to choose dynamically the number and orientation of mobile electromagnets?

Solution: Performance metrics to quantify dynamically the best configuration.

ONE MOBILE ELECTROMAGNET

Magnetic fields (the mean and standard deviation)

Magnetic gradients (the mean and standard deviation)

Two mobile electromagnets (coils 5, 7)

Magnetic fields (the mean and standard deviation)

Magnetic gradients (the mean and standard deviation)

rinter, wie unique, fen gefigte

PERFORMANCE OF ROBOTIC EMA SYSTEM

Representation of the magnetic field, manipulability of force and manipulability of torque with different configurations respectively

CONCLUSION AND FUTURE WORKS

Validated works

- Optimization through modeling of a magnetic ophthalmology robotic platform.
- Validation of the magnetic actuation matrix A_{T,F} (M,P)

Undergoing works

Experimental validation of performance matrices involving stationary and mobile electromagnets;

Future works

- Real-time control using deep learning methods ;
- Small animal tests using novel generation of coils.

$$\begin{bmatrix} \mathsf{T} \\ \mathsf{F} \end{bmatrix} = \mathrm{A}_{\mathsf{T},\mathsf{F}}(\mathsf{M},\mathsf{P})/$$

Thanks for your attention!

